thesis:plant_available_soil_water_pools

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
thesis:plant_available_soil_water_pools [2019/01/28 12:39] norlowskithesis:plant_available_soil_water_pools [2020/10/15 11:57] (aktuell) norlowski
Zeile 1: Zeile 1:
-==== Isotopic determination of plant available soil water pools ====+==== Intercomparison of plant water extraction methods for isotope analysis ====
  
-== Problemstellung ==+== Background ==
  
-An increasing number of scientists and disciplines around the world are benefitting from the application of stable water isotope techniques (2H and 18O) , especially in plant ecology and ecohydrology. Since water uptake and transport by plants do not change the isotopic composition, stable water isotope analyses can improve our understanding of plant water source acquisition. If samples of different plant water sources are extracted and analyzed for their water isotopic signature, it is so far be assumed to assess the origin of water used by plants (groundwater, deep and shallow soil water or surface water). For this reason, several water extraction methods have been developed (1).+An increasing number of scientists and disciplines around the world are benefitting from the application of stable water isotope techniques (δ2H and δ18O), especially in plant ecology and ecohydrology. Investigations of ecohydrological processes using such techniques have improved our understanding of soil water dynamics (1) and patterns of plant water use (2). In this regard, the analysis of the isotopic composition of xylem water has been applied to determine the source of water used by plants under the assumption that there is no fractionation during the uptake process by roots and water transportation (3). The basis of this approach is that the potential water sources available to plants (i.e. groundwater, deep and shallow soil water or surface water) show contrasting isotopic signatures (1, 2). Thus, the accuracy on determining of sources and plant water isotopic composition is crucial to understand ecohydrological processes. For this reason, a lot of effort has been put into developing methods to extract water from soils (4) and plants (5). However, a critical issue is that we know little about which water extraction method captures which water pool in the soil (more mobile to tightly bounded water to the soil matrix), and within the plants (stored intracellular water vs. water contributing to the transpiration stream). Yet another issue is that plants produce a wide range of organic compounds that can interfere with water isotopic measurements (6, 7). Identifying the techniques that can accurately represent the physiologically meaningful water pools in plants and soils, is key to improve our understanding of ecohydrological processes and test some of the new hypothesis that are shifting paradigms in hydrology (8).
  
-A critical issue is that we know little about which soil water extraction method captures which soil water pool (mobile to tightly bounded water). Attempting to unravel plant available soil water pools, Brooks et al. (2) introduced a new soil water concept assuming that two independent (decoupled) soil water pools exist in the soil (the two water world hypothesis). Accordingly, one represents mobile soil water expressed in the stream and the other consists of tightly bound water retained in the soil and used by plants. This hypothesis thus proposes that plants prefer water that is not easiest, energetically, to obtain and that vegetation and streams return different pools of water to the hydrosphere (McDonnell, 3).+== Aim ==
  
-== Ziel der Arbeit ==+In this study, we will compare different isotopic sampling techniques in plant and soil that involves in situ measurements of δ2H, δ18O, δ17O and different destructive water extraction techniques (e.g. centrifugation, water vapor equilibration and cryogenic extraction). This study goes beyond traditional investigations by combining for the first time multiple techniques in a well-controlled set up over different tree species (Fig. 1).
  
-In this study, we would like to test this hypothesis by isotopically determining the plant available soil water pools by mimicking the pressure plants apply for water uptakeFor this purpose, recently developed polymer tensiometers would be used (4)The determined pressure would accordingly be applied for soil water extractions for isotope analyses.+{{ :thesis:baeume-in-troegen_05122019.jpg?nolink&400 |}} 
 +Fig1: Experimental setup including ecohydrological and isotopic measurement equipment.
  
-Against this background, the potential candidate would: +Against this background, the potential candidate would:  
-  * Setup a greenhouse experiment +  * Extend an existing tree pot experiment 
-  * Sample different plant and soil materials for isotope analyses +  * Compare in-situ (vapour) vs. destructive water extraction techniques over time 
-  * Conduct water extraction experiments (1) with different soil types saturated to various moisture contents +  * Analyze, interpret and model the isotopic data
-  * Determine isotopic differences between different pressure levels +
-  * Analyze and interpret the isotopic data+
  
-== Herausforderungen == 
  
-The student/s should be interested in conducting lab work and be familiar with statistical software, such as R or Python.+== Challenges ==
  
-== Betreuung/Kontakt ==+The student/s should be interested in conducting field and lab work and be familiar with statistical software, such as R or Python.
  
-This project is in collaboration with Utrecht University and Wageningen University. The greenhouse experiment will be setup at Utrecht University and the lab work will be conducted at University of Freiburg.+== Supervision/Contact ==
  
-  * Natalie Orlowski, University of Freiburg, Germany, Tel. +49761 203 9283, natalie.orlowski@hydrology.uni-freiburg.de +Natalie Orlowskinatalie.orlowski@hydrology.uni-freiburg.deTel. 0761 - 203-9283 
-  * Hugo de Boer, Utrecht University, Netherlands, Tel. +31 30 253 6951, H.J.deBoer@uu.nl +This project is in collaboration with Magali Nehemy (Global Institute for Water SecuritySaskatoonCA) and Paula Martín-Gómez (INRA BordeauxFR).
-  * Martine van der PloegWageningen UniversityNetherlandsTel. +31317483714, martine.vanderploeg@wur.nl+
  
-== Sprache ==+== Language ==
  
 English English
  
-== Literatur ==+== Literature ==
  
-  - OrlowskiN.PrattDL& McDonnell, JJ. Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrol. Process. 30, 3434–3449 (2016).+  - Sprenger MSeeger SBlume TWeiler MTravel times in the vadose zone: Variability in space and timeWater Resour Res52(8):5727‐5754 (2016). https://doi.org/10.1029/2004WR003899
   - Brooks, J., R., Barnard, H., R., Coulombe, R. & McDonnell, J., J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geosci 3, 100–104 (2010).   - Brooks, J., R., Barnard, H., R., Coulombe, R. & McDonnell, J., J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geosci 3, 100–104 (2010).
 +  - Dawson TE, Ehleringer JR (1993) Isotopic enrichment of water in the ‘woody’ tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochim Cosmochim Acta 57:3487–3492.
 +  - Orlowski, N., Pratt, D. L. & McDonnell, J. J. Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrol. Process. 30, 3434–3449 (2016).
 +  - Millar C, Pratt D, Schneider DJ, McDonnell JJ. A comparison of extraction systems for plant water stable isotope analysis. Rapid Commun Mass Spectrom. 32(13):1031‐1044 (2018). https://doi.org/ 10.1002/rcm.8136
 +  - Martín‐Gómez, P., Barbeta, A., Voltas, J., Peñuelas, J., Dennis, K., Palacio, S., ... & Ferrio, J. P.. Isotope‐ratio infrared spectroscopy: a reliable tool for the investigation of plant‐water sources?. New Phytologist, 207(3), 914-927 (2015).
 +  - Nehemy, M. F., Millar, C., Janzen, K., Gaj, M., Pratt, D. L., Laroque, C. P., & McDonnell, J. J.. 17O‐excess as a detector for co‐extracted organics in vapor analyses of plant isotope signatures. Rapid Commun Mass Spectrom. 33(16), 1301-1310 (2019).
   - McDonnell, Jeffrey J. 2014. ‘The Two Water Worlds Hypothesis: Ecohydrological Separation of Water between Streams and Trees?’ Wiley Interdisciplinary Reviews: Water 1 (4): 323–29. doi:10.1002/wat2.1027.   - McDonnell, Jeffrey J. 2014. ‘The Two Water Worlds Hypothesis: Ecohydrological Separation of Water between Streams and Trees?’ Wiley Interdisciplinary Reviews: Water 1 (4): 323–29. doi:10.1002/wat2.1027.
-  - Ploeg, M. J. van der, H. P. A. Gooren, G. Bakker, C. W. Hoogendam, C. Huiskes, L. K. Koopal, H. Kruidhof, and G. H. de Rooij. 2010. ‘Polymer Tensiometers with Ceramic Cones: Direct Observations of Matric Pressures in Drying Soils’. Hydrol. Earth Syst. Sci. 14 (10): 1787–99. doi:10.5194/hess-14-1787-2010.  - Nummerierter Listenpunkt 
  
  
-{{tag>master offen gewaechshaus labor}}+{{tag>master abgeschlossen gewaechshaus labor}}
  
  • thesis/plant_available_soil_water_pools.1548679140.txt.gz
  • Zuletzt geändert: 2019/01/28 12:39
  • von norlowski